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Deep learning image analysis for
continuous single-cell imaging of dynamic
processes in Plasmodium falciparum-
infected erythrocytes
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Continuous high-resolution imaging of the disease-mediating blood stages of the human malaria
parasite Plasmodium falciparum faces challenges due to photosensitivity, small parasite size, and the
anisotropy and large refractive index of host erythrocytes. Previous studies often relied on snapshot
galleries from multiple cells, limiting the investigation of dynamic cellular processes. We present a
workflow enabling continuous, single-cell monitoring of live parasites throughout the 48-hour
intraerythrocytic life cycle with high spatial and temporal resolution. This approach integrates label-
free, three-dimensional differential interference contrast and fluorescence imaging using an Airyscan
microscope, automated cell segmentation through pre-trained deep-learning algorithms, and 3D
rendering for visualization and time-resolved analyses. As aproof of concept,we applied thisworkflow
to study knob-associated histidine-rich protein (KAHRP) export into the erythrocyte compartment and
its clustering beneath the plasma membrane. Our methodology opens avenues for in-depth
exploration of dynamic cellular processes in malaria parasites, providing a valuable tool for further
investigations.

Malaria, caused by the protozoan parasitePlasmodium falciparum, remains
a major global health challenge affecting hundreds of millions of people
worldwide1. The dire malaria situation underscores the need for a better
understanding of the complex host-parasite interactions leading to disease
manifestation in order to develop improved intervention strategies that, e.g.,
overcome the current drug resistance challenge. In this context, the ability to
observe and analyze host-parasite interactions at the single-cell level over
time would be a powerful tool2–4. For example, time-resolved continuous
single-cell imaging would facilitate additional insights into the function of
parasite-encoded proteins, particularly if the protein of interest changes its
subcellular localization during parasite development or if it assembles into
larger complexes over time.

Light-microscopy has been extensively used to investigate cellular
processes in P. falciparum5,6. However, these studies have largely depended
on static snapshots, which - even when involving single cell analysis - lack

temporal resolution. As a result, information about dynamic processes can
only be inferred indirectly in a pseudotemporal manner by aligning images
from different cells captured at different time points during the course of a
particular biological phenomenon. Although pseudotemporal studies have
provided invaluable insights into the biology of P. falciparum, such as
developmental processes7 andhost cell invasion8–10, theydonot capture real-
time dynamics and are, therefore, prone to misinterpretation. Only few
studies have thus far attempted to image the parasite over prolongedperiods
of time in four dimensions11–13.

The development of long-term single cell imaging for P. falciparum is
complicated by the intracellular life style and the small size of the parasite.
Conventional imaging techniques, which rely on lower-intensity illumina-
tion, fail to capture the intricate details necessary for comprehensive
analysis14. On the other hand, super-resolution microscopic methods
require high laser power to achieve the desired resolution15. However,
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prolonged exposure to intense light can induce changes in cell physiology
and even result in cell damage16–18. P. falciparum-infected blood stages are
highly light sensitive due to the presence of high amounts of photoactive
metabolites, such as heme and riboflavins19. To overcome the limitations
imposed by the unique biology of the malaria parasite, innovative imaging
and image analysis techniques are necessary.

Recent advances in microscope design and data processing now offer
new opportunities20,21. For instance, next-generation light microscopes
operate with reduced light exposure while maintaining high resolution22,23.
Additionally, machine learning approaches, including deep neural net-
works, are increasingly used for cell recognition, cell segmentation, and
signal tracking24–26, enabling the automatized analysis of large datasets with
high efficiency. These new tools have already been applied in several bio-
logical systems, including Arabidopsis for development studies27,28, Droso-
phila for organ development and neural mapping29, Caenorhabditis elegans
for gene expression analysis30, and zebrafish for real-time imaging of organ
development31,32. In the context of P. falciparum, Preißinger et al. have
recently demonstrated a neural network capable of identifying individual
erythrocytes in multi-cellular two-dimensional images, distinguishing
between infected and uninfected red blood cells, and classifying parasite
stages into rings, trophozoites, and schizonts33. In another study,Geoghegan
et al. employed lattice-sheet microcopy, a technique that uses a low dose of
light, to investigate parasitophorous vacuolar formation (a compartment
separating the parasite from the erythrocyte cytoplasm), capturing this
process in a space and time-resolved manner during invasion13.

In this study, we present amethod that uses deep learning on label-free
differential interference contrast (DIC) images obtained with an Airyscan
microscope to segment erythrocytes and thedifferent asexual blood stages of
P. falciparum. This approach enabled automatic image analysis and the
extraction of three-dimensional spatial and temporal informationwith high
accuracy. It further allowed us to track individual parasites over the entire
intraerythrocytic cycle of 48 h. As proof of principle, we monitored the
trafficking and sorting of the knob-associated histidine-rich protein
(KAHRP) and its assembly into knobs underneath the erythrocyte plasma
membrane over the entire asexual intraerythrocytic cycle.

Knobs play a pivotal role in the pathophysiology of P. falciparum, by
serving as aplatform for anchoring adhesins of theP. falciparum erythrocyte
membrane protein family 1 (PfEMP1) to the actin-spectrin membrane
skeleton of the host erythrocyte34,35. Knobs appear around 20 h post
invasion34. Hours later, thousands of them are present on the erythrocyte

surface36,mainly at positionswhere actinprotofilaments have been removed
from the host cytoskeleton37. As a consequence, infected erythrocytes
cytoadhere to the endothelial lining, uninfected erythrocytes, and platelets34.
By avoiding passage through the spleen, they escape splenic clearance
mechanisms, but on the other hand, cause severe pathology to the patient,
such as localized hypoxia in occlude capillaries or the syndromes associated
with maternal or cerebral malaria38. The dynamics of KAHRP export,
localization, and assembly are not understood well and monitoring the
process in single cells throughout the replicative cycle opens the perspective
of better understanding and possibly even intercepting this central process
in the pathogenesis of malaria.

Results
A neural network for segmentation of P. falciparum infected
erythrocytes
Figure 1 depicts the experimental workflow for monitoring and analyzing a
dynamicprocess inP. falciparum-infected erythrocytes at the single cell level
and throughout the entire asexual intraerythrocytic developmental cycle, as
exemplified by the export of KAHRP and its localization in the erythrocyte
compartment. This workflow encompasses the following steps: i) acquisi-
tion of 3D-stacks of single cell images using an Airyscan microscope
alternating between the DICmode and the fluorescencemode (Fig. 1A); ii)
automatic cell segmentation utilizing a neural network based on Cellpose
(Fig.1B); iii) analyzing the spatial and temporal dynamics of the process in
four-dimensions throughout the 48 h long replicative cycle (Fig.1C and D);
and iv) 3D rendering of the captured images for visualization and analy-
sis (Fig.1C).

The acquisition of 3D-images for many single cells throughout the
intraerythrocytic cycle creates datasets that are too large formanual analysis.
We, therefore, decided to use a neural network to segment P. falciparum
infected erythrocytes and delineate the erythrocyte plasma membrane, the
erythrocyte cytosol, and the parasite compartment. Our choice fell on
Cellpose. Cellpose is a convolutional neural network (CNN) designed for
cell segmentation tasks and pretrained on a diverse set of biological images.
Accordingly, only a fewannotated exampleswereneeded to re-train it to our
use case.Moreover, Cellpose can analyze both 2D and 3D images,making it
a perfect tool for our 3D transmitted light images39.

To re-train Cellpose, we first created training datasets consisting of
z-stacks of transmitted light images with the corresponding annotated
images of uninfected erythrocytes and infected erythrocytes at the ring (10

Fig. 1 | The experimental workflow for continuous single-cell imaging of
dynamic processes over the entire intraerythrocytic cycle from invasion to egress.
A Acquisition of 3D-stacks of single cell images using differential interference
contrast (DIC) and the fluorescence Airyscan mode. B Training a neural network
based on Cellpose on DIC images of uninfected and infected erythrocytes, yielding
models for erythrocytes and parasite cell recognition and segmentation. In the case

of infected erythrocyte, three parasite models were trained, on ring stages, tropho-
zoites/schizonts and all stages. C Automatic cell segmentation via the trained
models, delineating the erythrocyte plasma membrane, the erythrocyte cytosol and
the parasite. D Analyzing the spatial and temporal dynamics of the process under
investigation throughout the replicative cycle and 3D rendering of the captured
images for visualization.
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to 18 h post invasion) and trophozoite/schizont stage (30 to 45 h post
invasion). To facilitate the annotation process and discern better cell
boundaries in 3D, we acquired confocal fluorescence images of cells stained
with themembrane dye CellBrite Red. These confocal images were used for
annotation purposes only andwere not included in the training dataset. In a
pre-processing step, the images were cropped to individual cells. For the
erythrocyte training dataset, we imported thefluorescence image stacks into
ilastik, an interactive machine learning-based tool for image analysis40. We
employed the carving workflow in ilastik, which allows for volume seg-
mentation based on boundary information in fluorescence or electron
microscopy images. This segmentation approach yielded satisfactory
results, considering the varying staining intensities of the erythrocytes
(Fig. 2A and B). For the training datasets of infected erythrocytes, we
imported the fluorescence image stacks into the Imaris software package.
Each parasite was manually annotated using the surface rendering mode
(Fig. 2C and D). Combined the training datasets comprised 111 3D stacks
(64 uninfected erythrocytes, 23 ring stages, and 24 trophozoites/schizonts).

We next trained Cellpose in separate runs on the erythrocyte and the
parasite datasets, the latter containing both rings and trophozoite/schizonts.
We used the 3D extension of Cellpose, which operates similarly to the 2D
version but incorporates xy, xz, and yz slices to construct a 3D gradient
vector. All models were trained for 500 epochs and a 3.2-fold resolution
increase in z-direction. As Cellpose exhibits lower performance for shapes
with low convexity39, which are particularly prevalent in the ring stages41, we
also trainedCellpose on rings only and on trophozoites/schizonts only. This
yielded four training models: one for uninfected erythrocytes (erythrocyte
model), one for ring stages (ring stage model), one for trophozoites/schi-
zonts (late stage model), and a joint parasite model that incorporated both
ring stages and trophozoites/schizonts.

Evaluation of different Cellpose models
To evaluate the performance of eachmodel we did 10-fold cross-validation,
by splitting the annotated dataset into 10 equal-sized groups. Each model
was then trained and evaluated 10 times, each timeusing a different group as
the validation set and the remaining 9 groups as the training set. We

evaluated the accuracy of each model by computing the average precision
metric (AP) at different intersection-over-union (IoU) thresholds. The AP
considers the number of true positives (TP), false positives (FP), and false
negatives (FN) detections at a given IoU threshold and is calculated using
the equation:AP = TP/(TP+ FP+ FN).AP0.5-values (AP for an IoUof 0.5)
ranging from 0.54 to 0.95 were obtained for the different models, with the
joint parasite model having the lowest value (Fig. 3).

We further evaluated the performance of themodels by calculating the
area under the curve (AUC) after averaging the results obtained from the 10
iterations. A high AUC value indicates a plausible model. For the ery-
throcyte model, this resulted in an AUC of 0.81 for the prediction of the
entire red blood cell. For predicting the erythrocyte membrane only, we
computed the difference between the segment dilated by one pixel and the
segment eroded by one pixel, both in all directions. This processwas applied
to both the ground truth and the predictions, allowing us to compare the
resulting shells at different accuracy thresholds. The same metric as before
was employed to evaluate the performance, yielding an AUC of 0.63 for the
shells. We observed marginal improvement in AUC for both cases (up to a
maximum of 0.01) after implementing post-processing techniques,
including filtering by size, merging of touching segments, and 2D
smoothing (see materials and methods). The decrease in performance for
themembrane segmentation can be attributed to the limited comparison of
only the outer shell, which can exhibit greater variation in individual pixels
while disregarding the matching volume entirely.

The three parasite models were evaluated separately on the ring stage
dataset and the late stage dataset. The joint model achieved an AUC of 0.42
on the ring stagedataset and0.61on the late stagedataset. Themodel trained
on the ring stage images alone performed poorly on the ring stage dataset
(AUC = 0.33), while the specialized late stage model achieved an AUC of
0.70 on the late stage dataset. As a post-processing step, we merged all
parasite detections within the relevant cell and smoothed the parasite
volume by dilating by one pixel in all directions and eroding by one pixel in
the x,y direction. This post-processing step improved the AUC for the joint
model on the ring stage dataset from 0.42 to 0.49. However, it had a lesser
impact on the late-stage dataset (AUC increased from 0.61 to 0.64). In the
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Fig. 2 | Training dataset with ground truth annotation. A Representative image
showing erythrocytes stained with CellBrite to visualize the membrane. White lines
outline the segmentation of the erythrocytes obtained by the ilastik carving work-
flow, which serves as ground truth. Dataset consists of n = 64 z-stacks with several
cells. Top, confocal xy view, yz view. DIC xy view, yz view. Bottom, confocal xz view.
DIC xz view. Scale bar, 3 μm. B Volume rendering of segmented erythrocytes. Scale

bar, 3 µm Representative images showing infected erythrocytes stained with Cell-
Brite to visualize the erythrocyte plasma membrane and the parasite inside the
parasitophorous vacuole. White lines outline the segmentation of (C) a ring stage
parasite and (D) a trophozoite, obtained bymanual curation, which serves as ground
truth. The dataset consists of n = 24 and n = 23 z-stacks of ring and trophozoite stage
parasites, respectively. Scale bar, 3 μm.
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case of the single late-stagemodel, post-processing led to a decrease in AUC
by 0.03. Despite the small difference in the performance of both models for
the late stage dataset, we noticed in a qualitative analysis that the late stage
model outperformed the joint parasite model.We, therefore, decided to use
the joint model to predict the ring stage parasites and the late stage only
model to predict the late-stage parasites.

Proof of concept of segmentation strategy
We next investigated the kinetics of KAHRP protein export as a proof of
concept of our segmentation method. As mentioned above, KAHRP is a
virulence factor that contributes to knob formation and, hence, to the
disease-causing cytoadherence of infected red blood cells in the
microvasculature42,43. KAHRP has to cross two membranes, the parasite
plasmamembrane and the parasitophorous vacuolarmembrane, on its way
to the erythrocyte plasma membrane, where it binds to components of the
membrane skeleton and to parasite factors, including the main adhesins,
collectively termed PfEMP144,45. Previous research on the export of KAHRP
and the assembly of knobs has been limited to static snapshots, lacking
information regarding the dynamics and kinetics of the underlying
processes35,46.

To studyKAHRP dynamics during intraerythrocytic development, we
generated a mutant parasite line expressing a C-terminal fusion protein of
KAHRP with the photoactivatable fluorescent protein mEOS3.2 (Fig. 4A),
using CRISPR/Cas9 genome editing technology47. Five clonal lines were
obtained (Fig. 4B), and the integration event was confirmed by sequencing
of the entire KAHRP locus. Western analysis using a KAHRP-specific
antibody revealed a specific hybridization signal of ~100 kD in the parental

FCR3 parasite line and of ~125 kD in the twomutant lines tested (Fig. 4C).
Among the generated clones, we selected clone B4 for further investigation.

B4 produced knobs, as demonstrated by scanning electronmicroscopy
(Fig. 4D). However, the knobs were larger and sparser than those generated
by the parental parasite line (diameter: 116 ± 23 nm versus 61 ± 19 nm; 78
cells and63cells fromn = 4 independent experiments,p < 0.0001, two-tailed
t-test) (density: 3.2 ± 1.4 µm-2 versus 14.35 ± 6.4 μm-2; 78 cells and 63 cells
from n = 4 independent experiments, p < 0.0001, two-tailed t-test) (Fig. 4E
and F).

Previous studies have shown that knob morphology and density can
affect cytoadhesion efficiency48–50. To test whether the knobs of the B4 line
are functional, we performed a wash-out adhesion assay using chondroitin-
4-sulfate (CSA) coated on petri dishes. CSA is an established receptor for
cytoadhesion of infected erythrocytes in the intervillous space of the pla-
centa during maternal malaria51. To this end, equal amounts of uninfected
erythrocytes and purified erythrocytes infected with trophozoites of B4 and
FCR3 were allowed to settle on CSA coated petri dishes for 30min before a
wall shear stress of ~0.1 Pa was applied for 5min. The number of cells in
contact with the surface were counted before and after the washout. We
counted 2333 ± 517mm-2 (n = 3), 1832 ± 1072mm-2 (n = 3), and
1830 ± 1025mm-2 (n = 3) cells for uninfected erythrocytes and infected
erythrocytes of the B4 line and FCR3, respectively, before thewashout.After
washout, 2.4 ± 2.1%, 54.5 ± 27.7%, and 58.4 ± 35.9% of the cell remained
attached (Fig. 4G). There were no statistical differences in cytoadhesion
efficiency between B4 and the parental line FCR3 (p = 0.9882; Tukey’s
multiple comparison). These data indicate that B4 forms functional knobs,
despite altered knob morphology and density.

Fig. 3 | Evaluation of different Cellpose models. Shown are average precisions scores
± SD as a function of the intersection over union (IoU) threshold of the followingmodels:
(A) erythrocyte model; (B) erythrocyte model used to obtain the erythrocyte plasma
membrane; (C) joint parasitemodel (trained on rings and trophozoites/schizonts) on ring
stages; (D) late stagemodel (trainedon trophozoites/schizonts) on late stages. (A–D)Dark
color, evaluation on training dataset; light color, evaluation on test data. AUC, area under

the curve. AP0.5, average precision at 0.5 IoU, indicated with the dashed red line.
ERepresentative xy slices depicting infected anduninfected erythrocytes at various depths
within different z-stacks. DIC image with ground truth shown with yellow line and
predicted masks shown with red line. Top row, erythrocyte model. Middle row, joint
model on ring stages. Bottom row, late-stage model on late stages. Scale bar, 3 μm.
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We subsequently recorded the KAHRP fluorescence signal in single
cells throughout the intraerythrocytic cycle, from invasion to egress, in
intervals of 2 h under live cell imaging conditions, using a Zeiss Airyscan
LSM900 microscope in super-resolution mode providing sub-diffraction
resolution52. For each time point, a three-dimensional image was obtained.

Wenextappliedour imageanalysis tools to theKAHRPdataset (Fig. 5A),
however, we encountered new challenges not observed in the test dataset, as
the test dataset only covered snapshots of different parasite stages. We found
that cellular debris around the cell of interest aswell as large hemozoin crystals
and irregularpatches in thecytosolposeddifficulties foraccuratedetectionand
segmentation (Fig. 5B–H). Furthermore, we observed instances where the
model failed to detect the bottom of the chamber when a large hemozoin
crystalwas close to it, resulting inprotrusions in the z-direction.Consequently,
we adapted the post-processing accordingly based on qualitative assessments
of the predictions. The cell of interest was identified, and the associated seg-
ments were joined, based on size and increase in convexity, and stitched over
time. Out of the 43 cells examined, five were excluded due to major detection
errors at multiple time points. The remaining infected cells were analyzed for
inaccuracies at each time point. In spite of post-processing, protrusion in the
z-direction occurred in 83 out of a total of 1176 time points (Fig. 5B and G).
Additionally,we identified largermissing fragments in5 timepoints (Fig. 5B,E
and F) and larger protrusions in 17 time points (Fig. 5B and D). Smaller
missing parts were found in 81 time points, while smaller protrusions were
found in 60 time points (Fig. 5B, E and C).

Overall, the erythrocytemodel, alongwith the post-processing routine,
exhibited satisfactory performance in predicting erythrocytes in the time-
lapse dataset. From these predictions, we generated themembranemask by
eroding and dilating the predictions with a one-pixel margin. To identify
and segment the parasite, we applied the parasite models to the time-lapse
images. The ring stage was predicted using the joint model, while the late
stage was predicted using the single late stage model. We successfully
detected a parasite segment in 84.2% of all time points that showed an
infected erythrocyte (Fig. 5I). However, the predicted parasite segment

failed to accurately describe the parasite in cases of irregular light diffraction
in the erythrocyte cytosol (Fig. 5H).

Kinetics of KAHRP export
When analyzing the images, we noted that parasites originating from the
same maternal schizont exhibited varying rates of development. Addi-
tionally, the cells displayed an extended average duration of the intraery-
throcytic cycle, increasing from 46 ± 2 h under standard in vitro culture
conditions to 62 ± 6 h under imaging conditions, despite being superfused
with supplemented RPMI media at 37 °C. This variability in development
rates among individual cells, combined with the overall extended intraer-
ythrocytic cycle, introduced a new challenge in data analysis and inter-
pretation. We addressed this limitation by normalizing the rate of
development to that of an in vitro culture, using a method previously
describedbyGrüring et al. 11 Thismethoddefinedmorphological criteria for
each stage and each stage transition, such as the first visible hemozoin,
hemozoin in a single food vacuole, the transition from dynamic parasite to
static growth, a single large hemozoin spot, and movement of the food
vacuole to a central position. Notably, imaging conditions affected all blood
stages equally, as indicated by the comparison of each stage’s contribution to
the cycle duration (time-lapse: ring, 45.7%; trophozoite, 35.5%; schizont,
18.8%; cell culture: ring, 47.8%; trophozoite, 34.8%; schizont, 17.4%).

Using the normalized life cycle duration, KAHRP fluorescence
appeared in the parasite ~8 ± 3 h post invasion, consistent with previous
reports44, and then increased in a sigmoidal fashion with time (Fig. 6A and
B). Concurrently, the export to the erythrocyte cytosol began, reaching a
steady state at around 30 h post invasion, when the parasite developed from
the trophozoite to the schizont stage (Fig. 6B). Unlike previous reports, we
did not detect a rim of fluorescence at the parasitophorous vacuolar
membrane, a dotted pattern in the erythrocyte cytoplasm or an accumu-
lation of KAHRP-associated fluorescence in the parasite’s digestive
vacuole44. KAHRP fluorescence accumulated at the erythrocyte membrane
almost simultaneously with the cytosolic compartment and surpassed

Fig. 4 | Characterization of KAHRP::mEOS3.2 parasite line. A Schematic illus-
tration of CRISPR-based genome editing strategy to fuse the endogenous P. falci-
parum kahrp gene with the coding region ofmEOS3.2. Arrows, primer binding sites.
Not drawn to scale. B Pherogram showing products of diagnostic PCR using gDNA
from the parental P. falciparum line FCR3 (WT) andfive clonalmutants expressing a
KAHRP::mEOS3.2 fusion protein. A DNA size marker is indicated. (for uncropped
image, see Supplementary Fig. 1). C Western analysis confirming generation of
KAHRP::mEOS3.2 in the two mutant clones investigated. Molecular masses in kilo
Dalton (kDa). (for uncropped image, see Supplementary Fig. 2).D Scanning electron
microscopy of intact erythrocytes infected with trophozoite stage parasites of FCR3
(top) and B4 (bottom). Scale bar, 2.5 μm. Panels on the right (1, FCR3; 2, 3, B4) show
magnified views of the erythrocyte surface. Scale bar, 0.5 μm. E knob density and (F)

knob diameter of FCR3 and B4. Data points represent individual infected ery-
throcytes (mean of 7 knob diameter measurements per erythrocyte). Dashed bold
line, median; pointed lines, quartiles. Data from four independent biological
experiments are shown, withn = 63 for FCR3 andn = 78 cells for B4. p < 0.0001, two-
tailed t-test.GCytoadhesion efficiency. Erythrocytes infected with FCR3 and B4 and
uninfected erythrocytes as control were seeded on CSA-coated plastic dishes and
subsequently washed. The number of adhering cells were normalized to the initial
pre-wash number for each experiment. Each data point represents the average of five
replicates, obtained by analyzing different sections of the CSA-coated plastic dish.
The adhesion efficiency was comparable between FCR3 and B4. Error bars, SD;
Tukey’s multiple comparison.
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cytosolic levels approximately 20 h post invasion. Membrane accumulation
continued without saturation, ultimately accounting for ~53% of the total
fluorescence intensity (Fig. 6A and B). At the erythrocyte membrane,
KAHRP manifested as punctate structures that increased in intensity and
quantity over time. Upon schizont rupture and merozoite egress, some
KAHRP seemed to attach to the glass slide, while othermolecules seemed to
envelop the newly formed merozoites.

We next imported the 3D images of the segmented erythrocyte
membrane into Imaris to identify associated KAHRP clusters. By adjusting
the intensity threshold and cluster size, we optimized the detection to the
smallest clusters, while minimizing false positives. This approach facilitated
the visualization and quantification of membrane-proximate KAHRP
clusters in 3D (Fig. 7A), which, in turn, allowed us to interrogate their
dynamics and spatial organization. We found that the number of KAHRP
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Fig. 5 | Application of the segmentation strategy to continuous single-cell ima-
ging of KAHRP export. A Representative super-resolution time-lapse microscopic
images of the B4 line expressing KAHRP::mEOS3.2 from invasion to egress. The
time post invasion is indicated (hpi, hours post invasion). From top to bottom row:
single z-slice DIC images; intensity projections of KAHRP::mEOS3.2 fluorescence
images (generated using the Airyscanmode) summing several z-slices, with contrast
being adjusted for better visualization. The white arrowhead indicates emerging
KAHRP::mEOS3.2 accumulating in the parasite, The arrow indicates KAHRP
fluorescence clusters at the erythrocyte membrane; DIC slice merged with

KAHRP::mEOS3.2fluorescence image (green); segmented red blood cellmembrane;
segmented red blood cell cytosol compartment; segmented parasite compartment;
projection of segmented compartments, with red blood cell membrane (green), red
blood cell cytosol (beige), and parasite (purple). Scale bar, 3 μm. B z-stack inac-
curacies in erythrocyte segmentation after post-processing. A total of 1176 time-
points from 38 cells were investigated. C–H Various examples of inaccurate sample
rendering (I) Percentage of parasite segments identified by the model of all time
points showing a parasite. n = 1176 timepoints. Data from three independent
experiments are shown.
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clusters increased in a sigmoidal fashion during intraerythrocytic develop-
ment (Fig. 7B). Similarly, a sigmoidal relationshipwas observed between the
mean fluorescence intensity per KAHRP cluster and the time post parasite
invasion (Fig. 7C). These findings suggest that the parasite continuously
forms new KAHRP clusters underneath the erythrocyte plasmamembrane
and that each cluster grows with time by recruiting newKAHRPmolecules.

Discussion
Here,wepresent aworkflowdesigned for continuous recordingandanalysis of
dynamic cellular processes at high resolution, specifically at the single-cell level
in live P. falciparum blood stages. Our approach allows for the capture of the
entire intraerythrocytic life cycle of P. falciparum in three dimensions and in a
time-resolved manner, achieving high spatial and temporal resolution.

Fig. 6 |Kinetics ofKAHRPproduction and export.
A KAHRP-associated fluorescence intensity (F in
arbitrary units) in the parasite, the erythrocyte
cytosol compartment (RBC cytosol) and the ery-
throcyte membrane (RBC membrane) as a function
of intraerythrocytic development. B KAHRP-
associated fluorescence intensity (F in arbitrary
units) per µm2 in the parasite, in the erythrocyte
cytosol compartment (RBC cytosol) and the ery-
throcyte membrane (RBC membrane) as a function
of intraerythrocytic development.A,BNote that the
rate of development was normalized to that of an
in vitro culture, using amethod previously described
by Grüring et al. (seeMaterials andMethods) 11. The
means ± SEM of n = 26 determinations are shown.
A one-parameter sigmoidal function was fit to the
data points (red lines).
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Fig. 7 | Kinetics of KAHRP cluster formation at
the erythrocyte plasma membrane.
ARepresentative 3D projections showing formation
of KAHRP clusters underneath the erythrocyte
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post invasion (hpi). The color code indicates fluor-
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In configuring our system, we chose DIC images for their label-free
nature, enabling imaging at low light intensity53. This approach preserves
physiological conditions without requiring additional dyes or fluorescent
markers. However, DIC images have limited contrast due to phase delay
changes induced by the cells. In addition, DIC images lack quantitative
intensity information53, making image segmentation particularly
challenging20,54. The segmentation task is further complicated by the ani-
sotropic nature ofDIC images and the large refractive index of erythrocytes.

To overcome these challenges, we employed Cellpose, a pre-trained
convolutional neural network (CNNs) capable of learning valuable repre-
sentations from raw input data through multiple layers of processing20,55.
Cellpose, with its U-net architecture and 3D segmentation function, has
demonstrated generalization capabilities for various tissue segmentation
tasks39. Cellpose can be re-trained for specific tasks39, and in our study, we
leveraged this property to predict both the erythrocyte and the parasite,
enabling the delineation of the erythrocyte plasma membrane, the ery-
throcyte cytosol, and the parasite compartment.

While the trained neural networks accurately segmented infected
erythrocytes at the trophozoite and schizont stages, prediction accuracywas
lower for ring stages, especially early ring-stageparasites.Weattribute this to
the lower convexity of ring stages41 and challenges faced by the Cellpose
segmentation method in recognizing them. Increased training data might
enhance the prediction accuracy.

Despite the parasites remaining viable to develop and capable of re-
infection throughout the observation period, the replicative cycle was
extended. Achieving a normal 48-hour life cycle requires adjusting atmo-
spheric tension, particularly CO2 and O2, to conditions resembling in vitro
culture conditions, in addition to superfusion with 37 °C prewarmed sup-
plemented RPMI 1640 media as used in this study.

It is important to note that our deep-learning algorithms were speci-
fically trained on single-cell images recorded using anAiryscanmicroscope.
The ability of our models to segment DIC images generated with another
microscope has not yet been tested. Nevertheless, our approach highlights
the utility of deep learning tools in solving challenging image analysis
problems in P. falciparum. The implementation of deep learning image
segmentation is particularly advantageous, facilitating high-throughput
analysis of large amounts of image data.

As a proof of concept for our imaging and analysis workflow, we
investigated trafficking of KAHRP into the host cell compartment. The
kahrp gene is transcribed throughout the asexual blood stage development,
with RNA levels peaking approximately 20 h post-invasion before subse-
quently decreasing to a minimum in late schizonts56,57. Initial KAHRP sig-
nals become discernible at the erythrocyte plasma membrane around 14 to
18 h post-invasion (time adjusted), consistent with previous reports44.
Subsequently, the number of KAHRP clusters and their mean fluorescence
intensity per cluster followed a sigmoidal increase. On the basis of these
findings, we conclude that KAHRP clusters continuously form underneath
the erythrocyte plasma membrane and that individual clusters grow by
recruiting additional KAHRP molecules. These conclusions are consistent
with previous atomic force microscopic studies demonstrating an age-
related increase in knob density36.

We acknowledge that these conclusions are based on a genetically
engineered KAHRP::mEOS3.2 fusion protein. KAHRP acts as a modulator
for the organization of membrane skeletal factors (e.g., spectrin, actin and
ankyrin) and as a scaffold protein to assemble knobs, anchoring adhesins of
the PfEMP1 family to themembrane skeleton34,35.Modifications of KAHRP
through truncation, deletion, or insertion mutagenesis impact knob mor-
phology and density35,58. In this investigation, parasites expressing the
genomically encoded KAHRP::mEOS3.2 fusion protein exhibited larger
and fewer knobs than the parental FCR3 parasite line. Evidently, fusing
KAHRP at its C-terminus withmEOS3.2 altered the secondary and tertiary
structure of the protein and, consequently, affected its function as a platform
protein. However, we do not think that these limitations diminish the
general conclusions drawn from the study.

Previous studies on trafficking of KAHRP observed accumulation of
GFP-tagged KAHRP fusion proteins in the parasite ER, the digestive
vacuole, and as a necklace-like pattern in the parasitophorous vacuolar
lumen44. In contrast, we did not observe fluorescence clusters in compart-
ments other than around the host cell plasmamembrane. We attribute this
discrepancy to differences in kahrp gene copy number and an overload of
the protein export pathway in transiently transfected parasites with high
numbers of the trans kahrp gene.

In conclusion, this paper highlights the importance and challenges of
single-cell time-lapse imaging in malaria research and presents a novel
approach based on deep learning image analysis and label-free images. By
overcoming the technical challenges associatedwith imaging and analysis of
large datasets, the small intracellular malaria parasite becomes more
amenable to high-resolution 4D microscopy.

Materials and Methods
P. falciparum cell culture
TheP. falciparum parasite cell lines (FCR3 andmutant)were cultured inA+

erythrocytes in complete culturemedium (RPMI 1640 supplementedwith2
mM L-Glutamine, 25mM HEPES, 5% albumax, 5% A+ human serum,
0.2mM hypoxanthine and 20 μgml-1 gentamycin) under controlled
atmospheric conditions of 3%CO2, 5%O2, 92%N2 and 95%humidity at 37
°C as described59. The hematocrit and the parasitemia were maintained at
3.5% 1–6%, respectively. Parasites were selected for the knobby phenotype
by gelatine floatation once or twice per week60. Cultures were synchronized
to awindowof 2or 4 husing a combinationof 0.5%sorbitol61 and100 µgml-
1 heparin62 or MACS purification63.

Sample preparation for live cell imaging
For live cell imaging, a synchronized parasite culture was washed twice with
pre-warmed RPMI medium, and seeded on a Concanavalin A (1mgml-1)
coated (20min at 37 °C) 35-mm ibidi chamberwith glass bottom for 10min
at 37°C, as previously described11,12. The chamber was washed twice with
imaging medium (RPMI 1640, w/o phenol-red (stable glutamine, 2 g l-1

NaHCO3), 25mM HEPES, 0.2 mM hypoxanthine, 0.5% albumax,
12.5 μgml-1 gentamycin) until a faint red cell layer remained, and thenfilled
with 5ml of imaging medium. The chamber was incubated at 37 °C for
1.5–2 h for equilibration. Before imaging, the chamberwas filled completely
with imaging medium, and the lid was sealed with parafilm to prevent
evaporation. For membrane staining, the parasite culture was incubated in
imagingmedium containing 2 μl ml-1 CellbriteRed for 20min at 37 °C in an
orbital shaker, before seeding. For parasite staining, a schizont stage parasite
culture was added to a culture of uninfected erythrocytes stained with
CellbriteRed as described above. Subsequent invasion resulted in a stained
parasitophorous vacuolar membrane surrounding the parasite.

Super-resolution live cell imaging
Live cell imaging was conducted using point laser scanning confocal
microscopy on a Zeiss LSM900 microscope equipped with an Airyscan
detector and a Plan-Apochromat 63x/1.4 oil immersion objective. Imaging
was carried out under temperature control at 37 °C. To ensure stability, the
Definite Focus module was used for focus stabilization during image
acquisition. Images were taken at multiple positions using an automated
stage, and the intervals between captureswere set at 2 h over a total period of
80 h. For multichannel imaging, we employed a sequential line scanning
modewith 488 nm and 640 nmdiode lasers, at 0.1% and 0.15% laser power.
In stained samples, channels were not recorded sequentially but changed on
each slice due to the rapidmovement of the parasite. Brightfield imageswere
obtainedusing a transmitted light PMTdetector.GaAsPPMTandAiryscan
detectors were used with gain adjustments ranging from 450 to 950 V.
Images were acquired with a pixel size of 0.079 μm with Z-stack slices at
0.25 µm intervals, spanning a total rangeof 7μm.TheZENBlue 3.1 software
was used for 3D Airyscan processing employing the automatically deter-
mined default Airyscan Filtering (AF) strength. The spatial resolution of the
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Airyscan system is 160 nm in x and y, and 400 nm in z under the settings
described herein52.

Training dataset
A training dataset was created, consisting of 64 z-stacks of erythrocytes and
47 z-stacks of parasites. Ground truth annotations were generated with the
help of confocal fluorescent images. The stained erythrocytes were anno-
tated using ilastik’s carving pipeline resulting in three-dimensional binary
masks representing the erythrocytes40. For the parasites within the ery-
throcytes, manual labeling, following the stained parasitophorous vacuolar
membrane surrounding the parasite on the confocal fluorescence images,
was performed using Bitplane’s Imaris software. In instances where the
parasite could not be clearly distinguished from the erythrocyte membrane
in the upper z-planes, the labeling from the last visible z-plane was used to
create a rounded structure in the subsequent two to three slices, matching
the shape of the parasite. These labels from each plane were thenmerged to
create three-dimensional binarymasks representing the parasites as ground
truths.

Cellpose training and evaluation
The Cellpose cyto2 model was used for further specialization of the seg-
mentation task39. For the erythrocyte segmentation task, a single model was
trained to identify and segment erythrocytes. For the parasite segmentation
task, because of the differences in shape between the ring and late-stage
parasite, we trained three distinct models. One model was trained only on
ring-stage parasites, the second model was trained only on late-stage
parasites, and the third model was trained on all parasite images. Images
underwent a 3.2-fold increase in resolution in z-direction by linear inter-
polation and the evaluation was performed using a 10-fold cross-validation
to get performance estimates. We opted for cross-validation instead of a
train/val/test split due to the deliberately small size of annotations used. This
allowed us to use a larger part of the annotations for each training run (90%)
and still get reliable test performance estimations by averaging the perfor-
mance on the remaining 10% test data cross the 10 folds. Subsequently, we
used all the data to train the final models. Each model was trained for 500
epochs. We used the standard training pipeline of Cellpose, which includes
color normalization as well as random rotations and resizing as augmen-
tations. To evaluate the model’s performance, the average precision (AP)
was computed for various Intersection over Union (IoU) thresholds, ran-
ging from 0 to 1, for each test set. The AP values were then averaged across
all the test sets and the areaunder the curve (AUC)was calculated. Toobtain
theAP scores, the number of true positive (TP), false positive (FP), and false
negative (FN) detections at each IoU threshold were computed. The fol-
lowing post-processing routine was performed on erythrocytes: The cell of
interest was determined as the largest segment within the 3D stack, pos-
sessing a size of at least 10,000 pixels after cropping the boundaries for 30
pixels in the x and y directions. The main segment was merged with
neighboring segments unless there was a decrease in the volume-to-volume
ratio of the main segment with a convex hull of more than 0.5% or if the
main segment shared at least 450 pixels on its boundary with a smaller
neighboring segment. This merging process was iterated until no further
merging occurred. Each segment was then morphologically closed using a
one-pixel radius ball in each xy-plane individually. Predictionswere stitched
together in the temporal directionwhen two segments in consecutive frames
showed an IoU of at least 10%. The predictions were qualitatively assessed
for the occurrence of missing fragments or protrusions at each timepoint
using napari64. For post-processing of the parasite segment, all parasite
detections within one cell were merged, and the parasite volume was
smoothed by dilating by one pixel in all directions and eroding by one pixel
in the x,y direction.

Image analysis of time-lapse and KAHRP cluster
Time-lapse analysis: Qualitative assessment of time-lapse images was car-
ried out using the ZEN Blue 3.1. software. Using the DIC images, cells were
manually evaluated for parasite survival and health (red blood cells intact,

regular progression of development stages). Further, the timepoint for the
occurrence of parasite invasion, initial appearance of hemozoin, settlement
of the previously dynamic parasites,movement of the hemozoin to a central
position, and egress was manually determined. The following quantitative
analysis was carried out using FIJI65. To analyze the accumulation of
KAHRP::mEOS3.2 over time, the predictions obtained from cellpose were
used to createbinary segmentationmasks.Themembranemaskwas created
by eroding and dilating the erythrocyte prediction by 1 pixel each. The
cytosolic mask was created by subtracting themembrane and parasite from
the erythrocyte prediction. The backgroundwas determined for each cell by
measuring the mean gray value of a region of interest near the infected
erythrocyte and subtracted from the fluorescent signal in each plane of the
3D stack separately and at every time point. The raw integrated density of
the fluorescent signal was determined at each time point in the area of the
membrane, the cytosol, and the parasite. Data from individual cells were
aligned by time of invasion.

KAHRP cluster analysis: 3D microscopic images were analyzed using
the Imaris software (Bitplane) to identify and segment fluorescent spots
representing the clusters of fluorescent KARHP signal. This analysis
encompassed the complete temporal cycle of the data to assess the presence
and characteristics of spots throughout the process. Spot detection was
achieved using the “Spots” module within Imaris. To ensure accurate
identification, parameters such as intensity thresholds and spot size were
meticulously adjusted. The threshold was employed to distinguish true
signals from background noise, set between 60 and 600 units in this study.
Similarly, size filtering was applied to select objects with a diameter around
100 nanometers. This iterative process of parameter optimization was
crucial for obtaining a reliable and representative population of spots for
subsequent analysis, including downstream cluster analysis and inter-
pretation of their spatial organization within the 3D data.

Generation of KAHRP::mEOS3.2 parasite line
A fragment encoding mEOS3.2 was inserted in the frame after the KAHRP
coding sequence, using genome editing transfected technology47. To this
end, a fragment encoding the C-terminal KAHRP domain, the coding
sequence of mEOS3.2, and 300 bp of the kahrp 3’ untranslated region were
cloned into the transfection vector pL6B47, using a combination of In-
Phusion cloning and classical ligase-mediated cloning of AflII and SacII
restricted fragment. The guide RNA sequence was cloned into the pL6B
vector at the BtgZI site using In-Phusion cloning. Transfections were per-
formedby electroporation of 75 μg of eachplasmid and theCas9-expressing
plasmid into a synchronized ring-stage culture of the P. falciparum line
FCR347. Transfected parasites were selected on 1.5 μM DSM1 (ENDO-
THERM Life Sciences Molecules) and 5 nM ofWR99210 (Sigma-Aldrich).
Integration was confirmed by PCR of genomic DNA and sequencing ana-
lysis. Clones were obtained by limiting dilution and the integration was
again confirmed by PCR and Western analysis, the latter using a custom-
made rabbit peptide antibody against amino acids 288–302 of KAHRP
(Eurogentec, dilution 1:2000) and a goat anti-rabbit secondary antibody
(dilution 1:1000).

Washout assay
Petri dishes were covered with 10 mgml-1 chondroitin-4-sulfate in PBS
and incubated overnight at 4 °C. After washing, the dishes were treated
with 1% BSA in PBS for one hour at 37 °C and then washed with imaging
media. Parasites at the trophozoite stage (FCR3wild type ormutant) were
enriched using the MACS method63, yielding >90% infected red blood
cells. Enriched infected erythrocyteswere returned to culture for 1 h.After
removing the supernatant, cells were examined under a microscope and
imaged as reference timepoint (five fields of view for each condition).
Subsequently, the dishes were extensively washed with imaging media,
and images were taken again (five fields of view for each condition). The
images were analysed in a blinded manner using a randomization macro
for counting red blood cells, and the results were normalized to the
reference time point.
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Scanning electron microscopy
A trophozoite stage parasite culturewas purifiedusing theMACSmethod63.
After fixation in 1% glutaraldehyde in 0.1M cacodylate buffer for one hour
or overnight at 4 °C, the cellswerewashed, and 20 μl of the resuspendedcells
were left on 0.01% Poly-L-Lysine incubated coverslips for 20min at RT.
Subsequently, the coverslips were stainedwith 1%osmium tetroxide for one
hour at 4 °C and underwent a dehydration series with acetone (10min each
in 25%, 50%, 75%, 95%, 100% acetone at RT). The samples were dried using
a critical point dryer and sputtered with 5 nm of palladium gold. Images
were acquired using a Zeiss Leo 1530 scanning electronmicroscope at 2 kV
and a working distance of 4 ± 0.4 nm using the SE2 detector. Knob density
was determined by counting knob-like structures in four areas of 1 μm2 per
infected red blood cell, and the mean knob diameter was calculated from
measurements of seven randomly chosen knobs. In total, 63 and 78 cells
were analyzed for wild type and mutant, respectively.

Statistics and reproducibility
Datawere analyzedusingSigmaPlot (v. 14.5, Systat) andGraphPadPrism9.
Statistical significance was determined using the two-tailed t-test or the
analysis of variance test (ANOVA) followed by post hoc Tukey’s test. p-
values < 0.05 were considered significant. The number of independent
biological replicates is indicated in the main test and/or the figure legends.
Measurements obtained from an individual cell is considered an indepen-
dent determination. For model validation, 1176 timepoints from 38 cells
were investigated. If independent data points were averaged, then themean
± the standard deviation (SD) or the standard error of the mean (SEM) is
shown, as indicated in the text and/or figure legend.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the article
and the Supplementary Data. Additionally, the images and segmentation
underpinning this study are available at the zenodo public repository under
https://doi.org/10.5281/zenodo.1428126866.

Code availability
The scripts including test examples are available at the githup public
repository under https://github.com/sciai-lab/CP_RBC_Pfalciparum67.
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