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ABSTRACT Measuring co-localization of different types of molecules is essential to understand molecular organization in bio-
logical systems. The pair cross-correlation (PCC) function computed from two-color microscopy images provides a measure of
co-localization between differently labeled molecules. Here, we compute a theoretical expression for the PCC function between
two molecules using two-dimensional Gaussian distributions as the effective point-spread functions for single molecules.
Through our analytical calculations, we provide a quantitative description of PCC in the case of multiple signal pairs. By fitting
our analytical solutions to simulated images, we can estimate both small and large separation distances. We then apply this
method to malaria-infected red blood cells (RBCs) imaged by stimulated emission depletion (STED) microscopy. We cross-
correlate the signal for the knob-associated histidine-rich protein, which the parasite uses to remodel the spectrin-actin network
of RBCs, with different signals from the RBCs and find that its average separation from the ankyrin junctions increases from
40 nm to 120 nm during the 48 h of the infectious cycle.
SIGNIFICANCE With the advent of super-resolution microscopy, it has become possible to extract information on the
nanometer-scale organization of biomolecules in cells from imaging data. A natural way to quantify the co-localization of
two types of molecules is the pair cross-correlation (PCC) function. By developing a theoretical framework for PCC based
on the assumption of two-dimensional Gaussian point-spread functions, we provide a better understanding of PCC profiles
and describe a method to estimate separation distances between molecules through image analysis. Our approach is first
validated through simulated images and then applied to malaria-infected red blood cells, where we quantify the re-
localization of a central protein used by the parasite. This case study demonstrates that PCC is a useful method to extract
quantitative molecular information from super-resolution images.
INTRODUCTION

Dynamic organization of molecules in cells is key to virtu-
ally all cellular functions (1). Most complex cellular func-
tions, such as adhesion, migration, division, and sensing,
requires efficient organization of the involved molecules
in space and time. Measuring molecular changes during
these biological processes is critical for their understanding
and for biomedical applications. During the last two de-
cades, super-resolution microscopy has revolutionized our
abilities to image on ever-decreasing scales (2,3). Dual-co-
lor super-resolution microscopy enables the measurement of
the distance between different types of molecules with high
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precision (4,5). With current methods, one can resolve dis-
tances down to a few nanometers in specialized situations;
for more general applications, the current resolution is
tens of nanometers (6).

To extract meaningful conclusions and parameters related
to biological systems or processes of interest, one requires
methods to analyze the acquired microscopy data. Several
methods that determine the spatial correlation between
two differently labeled fluorophores are localization based
(7,8). Recently, an image-based cross-correlation analysis
method has been used to show the extent of spatial co-clus-
tering of two proteins to each other (9,10). Mathematically
both approaches, i.e., particle localization-based distance
distributions and pixel-based correlation function for su-
per-resolution microscopy data, are equivalent and their us-
age depends on context (9). Here we focus on the second
method, which computes a pair cross-correlation (PCC)
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function to quantify spatial organization from dual-color
images. The PCC function for an image containing multiple
pairs of differently labeled molecules measures the proba-
bility of finding one molecule at a distance r from another
molecule compared to a sample with a random distribution
of the two molecules (8).

The PCC method provides a metric to describe changes in
the spatial organization of molecules in different samples
(11) and in different physiological conditions (7,8). For
example, a high degree of PCC at a given spatial distance
r indicates the presence of spatial arrangement or interaction
between molecules, whereas the absence of such correlation
suggests random spatial arrangement and nonspecific inter-
actions (7). The use of PCC to quantify temporal changes in
spatial organization during biological processes, develop-
ment of disease, or transport of molecules has so far not
been explored much. Our previous work has made an
attempt in this direction by using the PCC-based analysis
to show the dynamic re-localization of the knob-associated
histidine-rich protein (KAHRP), a central parasite protein
that binds to the red blood cell (RBC) cytoskeleton, during
malaria infection (10,12). KAHRP is a central building
block of the thousands of adhesive knobs that are induced
by the parasite on the RBC surface to increase residency
time in the vasculature and to avoid clearance by the spleen
(13,14).

The RBC cytoskeleton is composed of a quasi-hexagonal
network formed by spectrin tetramers that are connected by
junctional complexes with actin protofilaments. The spec-
trin-actin network is connected to the plasma membrane
both at these junctional complexes and at the ankyrin
bridges at the midpoints of the spectrin tetramers. We stud-
ied the spatial localization of several proteins (including
KAHRP, actin, ankyrin, and others) during the remodeling
of the RBC cytoskeleton in different states of malaria infec-
tion using stimulated emission depletion (STED) micro-
scopy (10,12). Specifically, we found that, at the initial
ring stage (1–24 h post invasion), KAHRP co-localizes
both with the ankyrin bridges and the junctional complexes,
and its PCC with ankyrin shows a maximum at zero dis-
tance. At the end of the ring stage and the beginning of
the trophozoite stage (24–36 h post invasion), it re-localizes
to the actin junctional complexes, indicated by the presence
of a peak at finite separation in the PCC profile between an-
kyrin and KAHRP. This suggests that knobs are formed pre-
dominantly at junctional complexes, in agreement with the
observation that the parasite dissolves the actin protofila-
ments (15,16). Although the peak at a finite separation pro-
vides an estimate of separation distance, the peak at origin
for co-localizing signals provides only a qualitative measure
of proximity between the signals. Hence, we concluded that
KAHRP localization with respect to ankyrin is dynamic dur-
ing progression of the infection. However, we could not es-
timate the changes in actual separation or other signal
parameters from the experimental images. Only for larger
2 Biophysical Journal 124, 1–12, August 5, 2025
separations, such as molecules at different positions along
the relatively long spectrin filaments, did PCC profiles
show a clear peak, and centroid-to-centroid distances could
be measured, as reported in our earlier work on changes in
the RBC cytoskeleton during the time course of a malaria
infection (10). In general, in all previous studies, the PCC
profile provided more qualitative changes between different
conditions rather than quantitative measures (7–9). Further-
more, the qualitative understanding of changes in the PCC
profile lacks insight into the influence of image features,
such as shape, size, and density of signals, which can poten-
tially modulate the PCC profile for a given image. This lim-
itation stems from the reliance on a limited number of
images under specific conditions rather than diverse samples
with wide variability.

Here, we address these issues by theoretically connecting
the definition of PCC for two molecules using two-dimen-
sional (2D) Gaussian distributions as the effective point-
spread functions for single molecules to the PCC of multiple
molecule pairs in a given image. We use this approach to
dissect the effect of different relevant image and signal pa-
rameters on the PCC profile through several examples. We
further describe a way to extract the effective or average
separation distances between molecule pairs from the PCC
profile. To show the effectiveness of our analysis, we extract
the separation distance and signal size for KAHRP and an-
kyrin during the infectious cycle (10). In summary, we uti-
lize both experimental and simulated images to understand
the relationship between the PCC profile and various biolog-
ically relevant molecular parameters, aiming to improve the
quantification of spatial organization in two-color images.
MATERIALS AND METHODS

In vitro culture of Plasmodium falciparum

Malaria is caused by the infectious agents from the genus Plasmodium, with

P. falciparum being the most deadly species. The P. falciparum clonal line

FCR3 was cultured according to the protocol established by Trager and Jen-

sen (17). Fresh Aþ erythrocytes were resuspended in RPMI 1640 medium

supplemented with 25 mM HEPES, 2 mM L-glutamine, 0.2 mM hypoxan-

thine, 5% (v/v) human serum, 5% (v/v) GlutaMAX, 20 mg/mL gentamycin

(Thermo Fisher Scientific), and 5% human serum. The cultures were main-

tained at a hematocrit of 4%, parasitemia levels below 5%, and incubated at

37�C under a gas mixture of 5% O 2, 3% CO 2, and 92% N 2, with a relative

humidity of 96%.
Preparation of exposed membranes

Exposed membranes were prepared following the protocol described by

Sanchez et al. (10). Briefly, glass-bottom culture dishes (MatTek Corpora-

tion) were treated with 2% 3-aminopropyl triethoxysilane in 95% ethanol

for 10 min, followed by rinsing with 95% ethanol. The dishes were then

incubated at 100�C for 15 min before being treated with 1 mM bis(sulfosuc-

cinimidyl) suberate in phosphate-buffered saline (PBS) at room tempera-

ture for 30 min (18). After washing with PBS, the dishes were treated

with 0.1 mg/mL phytohemagglutinin E in PBS, as previously described

(18). The dishes were again washed with PBS, blocked with 0.1 M glycine
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for 15 min, and washed once more with PBS before being stored at 4�C un-

til further use. Magnetically enriched P. falciparum-infected erythrocytes

were immobilized on the functionalized dishes followed by washes with hy-

potonic phosphate buffer (10 mM sodium phosphate, pH 8, 10 mM NaCl)

and water (19). The exposed membranes were fixed with 4% paraformalde-

hyde in PBS for 15 min, washed with PBS, and blocked in PBS containing

3% bovine serum albumin (BSA). Membranes were incubated with primary

antibodies overnight at 4�C and with secondary antibodies for 40 min at

room temperature. All incubations and washes were performed in PBS

with 3% BSA. The following primary and secondary antibodies were

used: mouse monoclonal KAHRP antibody 18.2 (0.8 mg/mL, The European

Malaria Reagent Repository); rabbit KAHRP288-302 antiserum (1:500,

custom-made by Eurogentec); mouse monoclonal ankyrin-1 antibody H-4

(1:200, Santa Cruz Biotechnology); Star 580 goat anti-mouse antibody

(1:200, Abberior); and Star Red goat anti-rabbit antibody (1:200, Abberior).
STED microscopy

Super-resolution images were acquired using an STED/RESOLFT micro-

scope (Abberior Instruments, Germany) equipped with 488 nm, 594 nm,

and 640 nm excitation lasers, along with a 775 nm STED laser. An Olympus

microscope with a 100� oil immersion objective (UPLSAPO 1.4 NA oil,

0.13 mm WD) was used. The STED laser power was set to 40%. Fluores-

cence emitted fromAbberior Star 580-conjugated secondary antibodies was

detected in the 594 nm excitation channel (green images), whereas fluores-

cence from Abberior Star Red-conjugated secondary antibodies was de-

tected in the 640 nm excitation channel (magenta images). The pixel size

was set to 15 nm, with a pixel dwell time of 10 ms. Deconvolution of

2D-STED images was performed using Imspector software (Abberior In-

struments), utilizing the Richardson-Lucy algorithm with default settings

and a regularization parameter of 1 � 10�10.
RESULTS

PCC between two Gaussian signals

To provide a theoretical understanding of PCC, we first
calculate analytically the PCC profile for two Gaussian sig-
nals. The steps for computing pair cross-calculation from
images and localization points are detailed in previous
studies (9,20). In summary, the PCC function between a
pair of images is computed by first calculating the pair-dis-
tance distribution (PDD). The PDD for localization-based
data is a histogram of pair distances of differently labeled
molecule pairs (8,9,20). For image-based data, it is defined
as the sum of pixel intensity products of the two images for
fixed radial separation (obtained by different possible trans-
lational shifts in x and y directions between the images for a
fixed euclidean distance between them) normalized by the
product of the total intensities of the individual images
(9). The PCC profile is calculated by binning the resultant
distribution using annular bins (details described in the ap-
pendix). Here we drive the PCC profile for two Gaussian
signals with standard deviations s1 and s2, respectively,
and separated by a distance m. PDD between two Gaussian
signals has been previously calculated (4,21) and recapitu-
lated here for completeness. For two Gaussian signals
(with distribution pð~ri; ~mi; siÞ) with a peak at ~m1 and ~m2,
the probability of finding a pair at a separation distance,
~r ¼ ~r1 � ~r2, is a Gaussian distribution with mean m ¼
��~mj ¼ j~m1 �~m2

�� and variance s2 ¼ s21 þ s22 and has the
following form:

P12ðr;fÞ ¼ 1
2ps2

exp

 
� ð~r�~mÞ2

2s2

!

¼ 1
2ps2

exp

�
� ðr2þm2 � 2r m cos fÞ

2s2

�
:

(1)

Integrating over all possible angles (f) in two dimensions
(0 to 2p), all pairs with fixed separation r can be sampled.
Hence, we can obtain the probability for observing a given
separation distance in 2D, the PDD, as

PðrÞ ¼
Z 2p

0

rdfP12ðrÞ ¼ r

s2
exp

�
� m2 þ r2

2s2

�
I0

�rm
s2

�
(2)

where I0ðxÞ ¼ ð1 =ð2pÞÞ R 2p
0

df exp ðx cos fÞ is the modi-
fied Bessel function of integer order zero.
In the next step, the above PDD is binned into radial bins.
The binned distribution for infinitesimally small bin-width
Dr, can be written as

PbinðrÞ ¼ Dr
r

s2
exp

�
� m2 þ r2

2s2

�
I0

�rm
s2

�
: (3)

Finally, the PCC is computed by normalizing the binned dis-
tribution with the relative area of the annular bins as

follows:

CðrÞ ¼ PbinðrÞ
Abin

�
Aimage

¼ PbinðrÞ � Aimage

pDrð2r þ DrÞ

¼ Aimage

2ps2
exp

�
� m2 þ r2

2s2

�
I0

�rm
s2

� (4)

where in the last expression we have set Dr ¼ 0, assuming
infinitesimal small bin size.
The above analytical expression for PCC provides a sim-
ple way to interpret changes in the PCC profile, e.g.,
changes in the location of the peak in the PCC profile under
different parameters and conditions. The above expression
shows that the PCC profile CðrÞ is determined by the varia-
tion of two functions, a decreasing exponential function and
another increasing function (starting from 1 as I0ð0Þ ¼ 1).
The separation distance m and s determines if CðrÞ is purely
decreasing or displays a peak. For m/0, I0z1 (remains
close to 1) and the PCC profile is a decreasing exponential
whose decay is determined by s. For large m[ 0, the expo-
nential function decreases modestly for r <m and cannot
diminish the increasing effect of I0, which causes CðrÞ to in-
crease at small r values. However, for large r values, the
exponential function dominates over I0 function and causes
the CðrÞ value to decrease again. Therefore, one observes a
peak in CðrÞ under these conditions. This transition from a
peak at zero to a peak at a finite distance in the PCC profile
is depicted in Fig. 1 for a pair of simulated Gaussian signal
Biophysical Journal 124, 1–12, August 5, 2025 3
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FIGURE 1 Differences between a PDD and PCC distribution. (a) A pair of fluorescent signals (red and green) separated by 40 nm. The standard deviation
for the red and green signals is set to 25 nm and 30 nm, respectively. (b) PDD for two Gaussian signals separated by different distances from 0 to 100 nm. The

peak of the PDD at a smaller separation distance shows more minor shifts and appears to be saturated for a distance of less than 20 nm. (c) PCC for two

Gaussian signals at different distances. For zero separation, the PCC value at the origin is the highest. It decreases progressively as the separation distance

increases. For separation distance > 60 nm, the PCC shows a peak at an intermediate distance. The peak distance is close to the actual separation between the

signals. (d) The location of peaks in PDD and PCC profiles is compared with the exact separation distance. The peak location of PDD profiles is higher than

the actual separation and saturates at a finite value at smaller separation distances. The peak locations of PCC profiles are lower than the actual separation at

large separation distances and go to zero for smaller separation distances. (e) The phase diagram separates the regime with and without a peak in the PCC

profile. The heatmap shows the value of the PCC peak distance. The solid line separating the two regimes is given by mz
ffiffiffi
2

p
s. (f) Effect of change in standard

deviation of Gaussian signals on PCC for zero separation distance. (g) Same as in (f) with separation distance m ¼ 100 nm.
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(Fig. 1 a). Fig. 1 shows PDD and PCC profile for two
Gaussian signals separated by different separation distance.
The PDD profile shows a peak at all separation distances.
The location of the peak corresponds to the actual separation
distance for large separations between the signals. However,
for small separations, the peak location saturates and the
changes in PDD are insignificant, which makes this distribu-
tion (Eq. 2) unreliable for the estimation of separation dis-
tance (5). In contrast to PDD, the PCC profile shows
progressive changes, its value at the origin decreases as
the separation distance increases, and a peak emerges for
large separation distances (shown in Fig. 1 c). Although
PDD profile displays a maximum close (but slightly higher)
to the real separation between the two signals, the PCC
maximum is slightly lower than actual separation ( rpeakz
mð1 � s2 =2m2Þ in the limit m[ s; Fig. 1 d). Therefore
the PDD peak saturates to a finite value and the PCC peak
disappears as the separation distance decreases.

The presence and absence of a peak in the PCC profile as
a function of s (signal standard deviation) are shown in
Fig. 1 e (upper and lower regions, respectively). The bound-
ary that separates these regions is given by mz

ffiffiffi
2

p
s (white

line in Fig. 1 e). The color code shows the value of the PCC
peak distance. The transition from a peak at the origin to a
peak at a finite distance in the PCC profile can occur not
4 Biophysical Journal 124, 1–12, August 5, 2025
only through changes in separation distance but also through
changes in signal size, for example, due to clustering of mol-
ecules during some biological processes. The effect of
changes in signal standard deviation is shown in Fig. 1 f
for zero and nonzero (100 nm) separation between the signal
pairs. For zero separation, a peak at the origin always exists
because the condition

ffiffiffi
2

p
s> 0 holds for all s values (clearly

seen in Eq. 4 for m ¼ 0). For finite separation, the transition
occurs when s>m=

ffiffiffi
2

p
, as shown in Fig. 1 g.

In this work, we focus on the image-based computation of
the PCC profile. The pixel-based definition of PDD and
PCC and its relation to localization-based data have been
defined in our previous work (10) and given in the supporting
material for completeness. For image-based data, the PDDand
PCC distribution depends on the image resolution, as the pixel
width of the image limits the translational shifts used for their
computation. To illustrate the effect of image pixel width, we
use an experimental image of two co-localized signals shown
in Fig. 2 a. For two co-localized signals, one expects a peak at
the origin in the PCC profile; however, the computed profile
does not show this behavior (Fig. 2 b). This discrepancy arises
due to the dependence of image pixel width on the resolution
and statistics of the joint product distributions that determine
PDD and PCC profiles. The fact that the minimum separation
distance can be either 0 or 1 pixel limits the resolution of these
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FIGURE 2 Image interpolation improves the PCC profile. (a) A pair of fluorescent signals (red and green channels in the left and center channels, respec-

tively) with overlapping distribution (shown in the right panel). Scale bar, 10 pixels. (b) The PCC profile of this image for different distances. (c) Image

intensity at four corners of a pixel is interpolated to smaller grids (i.e., the pixels of the new image). (d) Calculated PDD profiles of the interpolated images

at different new pixel widths D xy. (e) PCC profile converges for images with lower pixel dimensions.
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distributions. Further, due to low number of occupied pixels in
the image, the product distribution suffers from low statistics.
However, if the intensity of a single fluorescence signal covers
multiple pixels (pixel width�width of the signal or FWHM),
one can interpolate the signal profile into smaller grids to
improve both image resolution and statistics of the computed
distributions. To achieve this, we divide each pixel area into
smaller grids and interpolate the signal intensity using bi-
linear interpolation as shown in Fig. 2 c. Fig. 2 d and e show
PDD and PCC profiles for interpolated images with different
pixel size. Interpolated images with lower pixel size lead to
smooth PDD and PCC profiles. As a result, the PCC changes
and recovers the profile of a co-localized signal (Fig. 2 e). The
improvement in the PCCprofile from image interpolation step
saturates for smaller grid sizes, suggesting that further
decrease of the pixel size does not improve the statistics of
the distributions. This image enhancement step before im-
age-based PCC computation is crucial to the interpret the
experimental images and for comparison with the theoretical
profiles derived in this work.
PCC for multiple Gaussian signals

Next, we extend our analysis to multiple signals by consid-
ering two images, R and G, consisting of NR and NG

Gaussian signals. The intensity, mean position, and standard
deviation of a Gaussian signal is denoted by pi, mi, and si
and qj, mj, and sj for red and green signals, respectively.
The images are defined as the sum of Gaussians as follows:

IRðrÞ ¼
XNR

i

pi
1

2ps2
R

exp

 
� ðr � miÞ2

2s2
R

!

and  	 
 !

IGðrÞ ¼

XNG

j

qj
1

2ps2
G

exp � r � mj

2

2s2
G

(5)
where pi and qi are the amplitude of the individual signals in
the image R and G respectively. Following the calculations

for single pair distributions, one can write the PDD and PCC
for multiple pairs as

PðrÞ ¼ Dr
1�P

ipi
P

jqj

�X
i;j

piqj
r

s2

exp

�
� m2

i;j þ r2

2s2

�
I0

�rmi;j

s2

� (6)
where the sum is over all possible pairs (i.e., NG � NR).
Therefore, the PCC function is given by
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FIGURE 3 PCC analysis for multiple signal pairs. (a) Generated image with small separation (20 nm) between red and green signals. (b) Comparison

between analytical computed and image-based PCC profiles for correlated signal. (c) Generated image with a large separation distance (80 nm) between
red and green signals. (d) Comparison between analytical computed and image-based cross-correlation profiles for well-separated signals. (e) Generated

image with different numbers of green molecules and fixed red molecules. (f) PCC is unchanged when the number density of one molecule is fixed. (g)

Generated image with different number of pairs of red and green molecules. (h) PCC depends on the number of pairs. In the plot inset, the PCC is normalized

by its maximum value for all the images.
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� m2
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The above expression matches the PCC computed from
simulated images (generated using known pi; qj;m and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R þ s2G

q
values) as shown in Fig. 3 a–d. To gain

insight of the different terms, one can further simplify the
PCC expression by neglecting contribution from the next-

nearest neighbor of opposite color, i.e., mijnext� nn
[

ffiffiffiffiffiffi
2s

p
and assuming the separation distance with the first-nearest
neighbor of opposite color to be similar, i.e., mijnnz m.

The second assumption holds when the signal pairs in the
image have similar separation distances between them. We
will discuss the case with heterogeneous separations later.
Under these conditions, one obtains an expression that is a
scaled version of single pair PCC and is defined by

CðrÞzAimage

2ps2

 P
i;jpiqiP

ipi
P

jqj

!
exp

�
� m2 þ r2

2s2

�
I0

�rm
s2

�
: (8)

The expression leads to several insights into the depen-
dence of PCC on the density of signal pairs. If piz p;
qjzq, i.e., the intensities of individual signals in the image
are similar, then
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CðrÞzAimage

2ps2

�
minðNR;NGÞ

NRNG

�
exp

�
� m2 þ r2

2s2

�
I0

�rm
s2

�
:

(9)
Here, we have used
P

i;jpiqj ¼ pq minðNR; NGÞ,P
ipi ¼ pNR and

P
iqi ¼ qNG. The numerator of the

scaling factor depends on the number of signal pairs, and
the denominator depends on the product of the number of
signals. If NRsNG, then minðNR; NGÞ=ðNRNGÞ ¼
1=maxðNR; NGÞ. The expression implies that the PCC de-
pends on the signal that is higher in number in the image
and does not change if the number of another color signal
decreases in the other image. We have illustrated this sce-
nario with simulated images in Fig. 3 e and f, where, for a
fixed number of red signals (NR ¼ 12), the green signals
are lowered in number (NG ¼ 1;3;6;9). The profiles differ
only for large distances where the contribution from second-
nearest neighbor leads to some variation in the profile.
Typically, a second peak in the full PCC arises due to the
presence of next-nearest-neighbor signals of the opposite
color (green/red) for a given color (red/green) if the signal
pairs exhibit some regularity in their arrangement within
the sampled image. The PCC profiles are the average of
10 simulated images where a fixed number green signals
are generated at different random orientations. The variance
in the PCC profile from multiple simulated images is shown
in the plot. However, when the total number of signal pairs
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FIGURE 4 Fitting procedure for distance estimation. (a) Example image with small separation (30 nm) between red and green signals. Here, we have

simulated heterogeneously shaped signals using clusters of closely spaced localization points to generate individual signal spots. The resulting red and green

signals are separated by a mean separation of m ¼ 36 nm. (b) The self-cross-correlation profile is computed by performing a PCC analysis of a signal with

itself (i.e., PCC with zero separation distance). The profile depends only on the standard deviation of the signal. Fitting the measured profile with analytical

expression, we estimate the standard deviation of red signal (estimated sR ¼ 29:37 nm). (c) The steps in (b) are repeated for green signals to estimate the

standard deviation (estimated sG ¼ 24:75 nm). (d) Using the standard deviation of red and green signal, the standard deviation of the joint distribution is

calculated. Then the measured PCC profile is fitted with the analytical expression of PCC with single parameter m, the separation distance. The mean sep-

aration between the red and green signals is m ¼ 35:965 nm and the estimated separation distance of the cluster is 37 nm.
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change, the PCC scales as 1=N (where NR ¼ NG ¼ N, as
shown in Fig. 3 g and h), i.e., its value decreases, but its
shape remains the same when the PCC profile is normalized
with its maximum value (Fig. 3 h inset). This illustrates that
the PCC profile remains largely independent of image area
if the signals are homogeneously distributed, as an increase
in sample area proportionally increases the number of pairs,
balancing out their effects.
Separation distance estimation in simulated
images

The above results suggest that, for co-localizing signals,
the value of PCC depends on multiple factors such as im-
age size, signal number density, separation distance, and
signal size. However the PCC profile shape depends
mainly on the signal separation and signal standard devia-
tion, i.e., the signal size. Therefore, to extract the average
separation distance and signal size from the two-color im-
ages, one can fit the normalized PCC with the analytical
expression in Eq. 8. The variation of PCC depends on dis-
tance r through two parameters m and s, which can be ob-
tained from the fits. To accurately estimate these
parameters, we perform conditional fitting by first esti-
mating sR and sG from the individual images. We define
self cross-correlation, where an image is cross-correlated
with its copy, which mathematically means mij ¼ 0 and
is given by

CSSðrÞzAimage

4ps2
S

 PNS

i p2i	PNS

i pi

2
!

exp

�
� r2

4s2
S

�
(10)

where S˛ ½R;G�. Therefore, one can estimate the effective s
for each signal by fitting the computed self cross-correlation
function with the above function. Once both sR and sG are
determined, the separation distance can be obtained by
conditionally fitting the cross-correlations profile with
the corresponding analytical function CðrÞ for single
parameter m.

To illustrate these steps, we have generated an image
with multiple pairs of signals in Fig. 4. Furthermore, we
have created images with heterogeneous signal shapes
(larger than single-molecule signals) by creating clusters
of focal red and green points. We generated the images
by assigning red focal points on a hexagonal lattice and
placing green focal points at a fixed distance away from
them with random orientations. Then we added Gaussian
signals at the focal points and a few points in their neigh-
borhood to create red and green signals or clusters with
different shapes (to account of signal heterogeneity in ex-
periments). The mean separation between the red and green
signals was measured. This is the separation distance be-
tween the centers of the effective red and green signals
or clusters. We then applied our multi-step procedure to
determine the mean separation by fitting the three profiles
(two self-cross-correlations and one cross-correlation).
Fig. 4 shows that the separation distance estimated from
the fitting procedure is close to the mean separation. In
the demonstrated simulated image, initial separation of be-
tween focal red and green signals is set to lattice separation
of 30 nm that increased to z36 nm upon extending the sig-
nals to form cluster/large signals and the estimated separa-
tion from the fitting procedure came to be z37 nm.
Further, we observe that the image-based PCC (symbols
in Fig. 4) from simulated images and the corresponding
fitted analytical PCC (line) diverge at longer distances.
The secondary peak in the PCC arises from the contribu-
tion of the next-nearest neighbors, which is considered
Biophysical Journal 124, 1–12, August 5, 2025 7



FIGURE 5 Extraction of separation distance by fitting experimental self-cross-correlation and cross-correlation profiles. (a) A representative STED im-

ages of exposed membranes prepared from P. falciparum-infected erythrocyte. The membrane is stained with two different antibodies against KAHRP (the

rabbit peptide antibody pAb and the mouse monoclonal antibody mAb18:2). (b) Separation distance estimation involves three steps. First, the self-cross-cor-

relation profiles of the two channels are fitted with the analytical function for self-cross-correlation to estimate the standard deviation of fluorophore signals.

The left and middle panel shows fitting for red and green channels, respectively. Using the standard deviation of individual channels, a joint standard devi-

ation is calculated. Then the analytical PCC function is fitted with the experimental profile with joint standard deviation to obtain the separation distance. (c)

Plot showing the standard deviation of the red channel at a different times post malaria invasion. (d) The same is shown for the green channel. (e) Plot shows

separation distance between KAHRPs (using two antibodies) and between KAHRP and ankyrin over the course of malaria infection. 20 images were used to

generate bar graphs in (c) and (d). For KAHRP vs. ankyrin data, KAHRP and ankyrin are tagged with red and green antibodies, respectively. Representative

STED microscopy images for different stages are provided in Fig. S2.
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negligible when deriving the analytical expression of PCC
in Eqs. 8, 9, and 10. For this reason, we fit only the
decreasing part of the PCC profile (open squares in all
the PCC profile plots) with the analytical expression, as
this region contains the dominant contribution from the
first-nearest neighbor.
Estimation of molecular separation in malaria-
infected RBCs

In this section, we apply our understanding and fitting pro-
cedure to estimate the separation of KAHRP and ankyrin
during the malaria infection in RBC. Fig. 5 a shows a
representative STED image of exposed membranes pre-
pared from P. falciparum-infected erythrocyte. As a refer-
ence case, we consider an RBC-membrane stained with
two different antibodies against KAHRP. Note that the
two antibodies bind to different epitopes and thus
the two signals are not identical even when binding to
the same molecule. To estimate the separation distance be-
tween KAHRPs, we first fit the self cross-correlation pro-
8 Biophysical Journal 124, 1–12, August 5, 2025
files of the two channels with the analytical function for
self cross-correlation. This gives estimates of the standard
deviation of signals in each channel. The left and middle
panels in Fig. 5 b show the fit for red and green channels,
respectively. In the next step, we fit the analytical PCC
function with the experimental profile with the effective

standard deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R þ s2G

q
fixed. This fitting step

provides the estimate for the separation distance m. Fig. 5
c and d show the standard deviation of the red and green
channels, respectively, at different times post malaria inva-
sion for two cases (KAHRP vs. KAHRP and KAHRP vs.
ankyrin at different hours post malaria infection). In
contrast to our simulated images (as shown in Figs. 3
and 4), where a second peak in the PCC profile is obse-
rved due to the repetitive occurrence of next-nearest neigh-
bors at fixed distances, the experimental images show a
saturating trend (Fig. 5). This can be attributed to the
well-known fact that signal pairs are heterogeneously
distributed in infected RBCs, unlike the more regular
arrangement observed in uninfected RBCs (11). Such a
heterogeneous arrangement of next-nearest neighbors leads



a b

c d

FIGURE 6 Effect of heterogeneous separation in the sample. (a) A representative STED images of exposed membranes prepared from P. falciparum-in-

fected erythrocyte at 36 h post invasion. The membrane is stained with KAHRP (the rabbit peptide antibody pAb; red) and ankyrin (mouse monoclonal

ankyrin-1 antibody H-4; green). (b) The standard deviation for the red and green channels is estimated as before. The separation distance is evident from

the experimental profile. However, the analytical profile does not fit well in this case. (c) Simulated data with heterogeneous separation distance between

nearest neighbors. In the left image, the count of pairs with short (10 nm) and large (100 nm separation is 1 and 9, respectively. In the right image, the count

of pairs with short and large separation is 6 and 4, respectively. (d) The change in the fraction of signal pairs with short and large separation dictates the pair

correlation and leads to transition from peak at large separation to peak at the origin. This is illustrated in the plot with PCC values for different images with

varying NS and NL values.
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to contributions from multiple secondary peaks that smooth
out when summed, resulting in either random correlation
(PCC value close to 1, as in Fig. 5 b, middle panel, for
green signals) or no correlation with the measured distance
due to the large separation of the secondary signals (as in
Fig. 5 b, left, for red signals).

Using the described fitting procedure, we have estimated
the separation distance between KAHRPs (using two anti-
bodies) and between KAHRP and ankyrin over the course
of malaria infection (Fig. 5 e). Our analysis shows that the
separation distance between KAHRP and ankyrin clusters
progressively increases during malaria infection, from
40 nm (same as in the reference case of KAHRP vs.
KAHRP) at the ring stage to over 100 nm at the trophozoite
stage. The smallest estimated separation of close to 40 nm,
seen in both KAHRP vs. KAHRP and KAHRP vs. ankyrin
images, could be influenced of the optical setup (the spatial
resolution of STED lies in the range between 35 nm to
50 nm) as well as by the size and orientation of the anti-
body complexes (primary and secondary antibodies, which
are approximately 21 nm). Further, we observe that the
signal size of KAHRP (indicated by the changes in stan-
dard deviation in the red channel) increases more than
1.5 times than its values at the beginning of the infection.
This finding agrees with previous studies suggesting that
the parasite remodels the RBC membrane by increasing
KAHRP clustering. The fit of experimental PCC with the
analytic expression does not perfectly match the profile
in the final stage (a representative image trophozoite stage
shown in Fig. 6 a and b). This is because the separation
distance between the molecule pairs becomes heteroge-
neous. However, in these conditions, the PCC has a clear
peak that provides the estimation of separation distance be-
tween the signals.

To illustrate the effect of heterogeneous separation be-
tween signal pairs, we generated images with multiple
signal pairs having either short (10 nm) or large (100 nm)
separations (Fig. 6 c). The number of pairs with short and
large separation is denoted by NS and NL, respectively.
The PCC profile shows a peak at a large distance (Fig. 6
d with NS ¼ 0 and NL ¼ 10). As the number of signal
pairs with short distances is increased, the PCC profile
broadens (Fig. 6 d with NS ¼ 1 and NL ¼ 9) and eventu-
ally shows a peak at origin as the number of signals with
Biophysical Journal 124, 1–12, August 5, 2025 9
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show distance is further increased. Therefore, we think the
broadening of PCC profile in the experiments at large sepa-
ration distance is due to variability in separation distance be-
tween the molecular pairs. The choice of short and large
separation in the demonstrated case was made to ensure a
clear distinction between the peaks at short separation
(near the origin) and a well-separated secondary peak at
large separation. For other combinations, where the two sep-
aration values are close to each other or the sample exhibits
heterogeneous, multiple different separation values, it be-
comes challenging to disentangle these contributions from
different pair separation values. In such samples, the
measured separation distance from the fits can be thought
of as the mean of all separations between pairs, but future
work is required to better approach this experimentally
important case.
DISCUSSION

With the recent advances in multi-modal imaging and super-
resolution microscopy, it has become crucial to develop
quantitative methods to analyze molecular-scale patterns
within images and infer meaningful numbers. In this
work, we provide a theoretical analysis of the image
cross-correlation method that has been used in our previous
study to quantify changes in molecular organization at
RBC-membranes during malaria infection (10,12). Previous
studies used cross-correlation method to estimate spatial co-
localization of point localization-based imaging data. The
PCC method was first applied to show spatial co-localiza-
tion of glycosylphosphatidylinositol and actin in the pres-
ence of an antibody that cross-links them (8). In another
study, PCC indicated that the co-distribution of a kinase
and a peptide in CH27 mouse B cell lymphoma cell line
changes in the absence and presence of an antigen (7).
The cross-correlation method was also used to investigate
spatial arrangement of several proteins in uninfected RBC
membrane using two-color single-molecule localization
from STORM imaging (11). All these studies defined
cross-correlation on localization points to compare clus-
tering and spatial co-localization and separation between
two colors. Our previous work used the cross-correlation
method on two-color STED images to compare changes in
different labeled molecules over the course of malaria infec-
tion (10,12). However, all of these studies provide only qual-
itative analysis of molecular reorganization through changes
in profiles of PCC function. To generalize the method to
large datasets under different conditions, understanding
the impact of image size, single-molecule density, and their
signal shape is important. The present study makes progress
in this direction by providing the theoretical underpinning of
the PCC method of image analysis. To make analytical
progress, we have used 2D Gaussian point-spread functions
to simulate single-molecular signal and provide an analyt-
ical expression for PCC of a pair of two molecules. In prin-
10 Biophysical Journal 124, 1–12, August 5, 2025
ciple, this approach could be easily extended to 3D, but it
would be difficult to find analytical solutions for non-
Gaussian point-spread functions.

Our analysis not only enhances the understanding of the
PCC profiles but also allows us to estimate meaningful pa-
rameters from the analytical expression for PCC. First, we
study the case of a single signal pair to understand how
the presence or absence of a peak in the PCC profile, which
qualitatively indicates co-localization, depends on signal
parameters such as the size of individual molecules (i.e.,
standard deviation), the separation distance, and the image
size. We find that this transition is continuous and depends
solely on the separation distance and the sum of the vari-
ances of the two signals. We further extend this theoretical
analysis to multiple signal pairs to quantitatively assess
the effect of signal number density and their spatial distribu-
tion. This case provides insight into how the absolute value
of the PCC is modulated in the presence of multiple signal
pairs or their density. To validate our method, we apply
this analysis to synthetically generated images with known
parameters, exploring various possibilities for interpreting
different types of image data that are usually not achievable
in experiments. We found that the PCC profile is unchanged
when the number density of one signal is decreasing, and the
shape of the profile remains unchanged over a good range if
the separation distance between signal pairs in the image is
homogeneous, regardless of their number density.

The applicability of this methodology to image-based
experimental data requires not only an analytical under-
standing but also an accurate determination of the PCC pro-
file, which could be limited by image resolution. In our case,
we find that image interpolation as a preprocessing step can
improve the accuracy of the computed PCC profile from
experimental images. We apply our theoretical analysis to
quantify molecular changes in key proteins in RBC mem-
brane images during malaria infection. Specifically, we
observe that the co-localization of KAHRP and ankyrin
diminishes and their separation increases as the malaria
infection progresses. This change, previously reported qual-
itatively through PCC profiles, is now precisely quantified
using our analysis method, revealing exact changes in mo-
lecular separation distance and average signal size. Specif-
ically, we observe an increase in the signal size of
KAHRP protein only during infection progression, which
aligns with experimental literature suggesting increased
clustering of KAHRPs to the actin junctions in the RBC
cytoskeleton. These observations are critical as they suggest
new underlying biological observation that might otherwise
be overlooked through qualitative image analysis.

Our approach should be applicable to all systems with a
certain degree of spatial regularity, which is typically the
case for membrane-bound processes in locally flat cells,
including the case of malaria-infected RBCs studied here.
Because our aim is to extract statements on the nanoscale or-
ganization, it does not work for confocal datasets. In fact,
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we did examine confocal data on infected RBCs, which
show, e.g., very good qualitative co-localization of the
different labels for KAHRP, but it was not possible to extract
meaningful statements on nanoscale separations, as it was to
be expected given the optical resolution around 200 nm.
However, our method should work for all super-resolution
methods, including localization methods like STORM or
PALM. In the supporting material, we discuss the mathe-
matical equivalence between the image-based approach
taken here and these localization-based approaches. It
would be highly interesting to directly apply our method
to both approaches using, e.g., the same sample imaged
by different microscopy techniques. However, such a pro-
cedure is challenging to achieve with real biological sam-
ples. To demonstrate the potential of such an approach,
we simulated STORM data from experimental images and
compared the localization-based PCC profiles with the im-
age-based PCC profiles for different numbers of single-
molecule centroids in a given image. We found that the
high density of point localization data provides accurate
PCC profiles at all distances, consistent with those obtained
from image-based PCC. The PCC profile deviates or lacks
accuracy at short distances only when the density of locali-
zation points is low (Fig. S1). These results validate the util-
ity of the method for estimating separation distances in a
diverse set of images, where signal pairs have similar sepa-
rations regardless of how the pairs are arranged within the
image.

To make further progress in the quantitative analysis of
two-color super-resolution imaging data, it would be inter-
esting to use samples that allow precise positioning (e.g., us-
ing quantum dots or DNA origami) to further test the
validity of our approach. For biological samples, it appears
very important to also make progress with heterogeneous
samples, as noted here for the case of late-stage infections,
or, e.g., for protein co-localization in cells migrating
through heterogeneous environments, which would also
involve correlation integrals on curved surfaces. Because
such challenges are hard to address with analytical ap-
proaches, machine learning might be a rewarding avenue
for future work in this direction.
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PAIR CROSS-CORRELATION BETWEEN TWO IMAGES
Here we describe the computation of pair cross-correlation between two images. First, we define two-dimensional pair distance
distribution 𝑃(𝜌) for given distance 𝜌 as the normalized product of intensity values 𝐼𝑅 (𝑥𝑖 , 𝑦 𝑗 ) of one image (red channel) with

intensity values of another image at location 𝐼𝐺 (𝑥𝑚, 𝑦𝑛) such that 𝜌 =

√︃
(𝑥𝑚 − 𝑥𝑖)2 + (𝑦𝑛 − 𝑦 𝑗 )2. The normalization factor is

the pixel-wise intensity product of the two images. Mathematically, 𝑃(𝜌) (1, 2) can be written as

𝑃(𝜌) =

∑
𝑖, 𝑗

∑
𝑚,𝑛 𝐼𝑅 (𝑥𝑖 , 𝑦 𝑗 )𝐼𝐺 (𝑥𝑚, 𝑦𝑛)𝛿

(√︃
(𝑥𝑚 − 𝑥𝑖)2 + (𝑦𝑛 − 𝑦 𝑗 )2 − 𝜌

)
∑

𝑖, 𝑗
∑

𝑚,𝑛 𝐼𝑅 (𝑥𝑖 , 𝑦 𝑗 )𝐼𝐺 (𝑥𝑚, 𝑦𝑛)
. (1)

For image dimensions 𝑋 ×𝑌 , the parameter 𝜌 takes from 0 to
√
𝑋2 + 𝑌2 with intermediate values given by

√︃
(𝑥𝑚 − 𝑥𝑖)2 + (𝑦𝑛 − 𝑦 𝑗 )2

for 𝑥𝑚 − 𝑥𝑖 = 0, 1, 2, ...𝑋 and 𝑦𝑛 − 𝑦 𝑗 = 0, 1, 2, ...𝑌 . Next, a histogram of pair distance distribution is computed by using bins of
width Δ𝑟 as

𝐻 (𝑟 , 𝑟 + Δ𝑟) =
𝜌=𝑟+Δ𝑟∑︁
𝜌=𝑟

𝑃(𝜌). (2)

The above distribution is further normalized to account for the increase in the area of radial bins. Specifically, the area
of each bin with respect to the total image area, 𝑁 (𝑟) = 𝜋Δ𝑟 (2𝑟 + Δ𝑟)/𝐴𝑖𝑚𝑎𝑔𝑒 is used as a normalization factor (1, 3). This
makes the distribution dimensionless and analogous to the cross-correlation function defined for localization points (3, 4). The
resultant distribution is the cross-correlation distribution for two images,

𝐶 (𝑟, 𝑟 + Δ𝑟) =
𝐴𝑖𝑚𝑎𝑔𝑒

𝜋Δ𝑟 (2𝑟 + Δ𝑟)

𝜌=𝑟+Δ𝑟∑︁
𝜌=𝑟

∑
𝑖, 𝑗

∑
𝑚,𝑛 𝐼𝑅 (𝑥𝑖 , 𝑦 𝑗 )𝐼𝐺 (𝑥𝑚, 𝑦𝑛)𝛿(

√︃
(𝑥𝑚 − 𝑥𝑖)2 + (𝑦𝑛 − 𝑦 𝑗 )2 − 𝜌)∑

𝑖, 𝑗
∑

𝑚,𝑛 𝐼𝑅 (𝑥𝑖 , 𝑦 𝑗 )𝐼𝐺 (𝑥𝑚, 𝑦𝑛)
. (3)

For all the experimental images analyzed in this work, we used image intensity thresholding (value = 20, with the maximum
intensity value being 255) as the sole preprocessing step. In principle, PCC can be computed without the thresholding step, but
we employed it primarily to accelerate the computation, which involves large matrix operations.
For localization-based data, the above expression for pair cross-correlation can be written in discrete form by representing the
image as the sum of centroid locations of single-molecule fluorescence signals, using

𝐼𝑅 (𝑟) =
𝑛𝑅∑︁
𝑖=1

𝛿(ri − r), IG (r) =
nG∑︁
j=1

𝛿(rj − r). (4)

The expression for PCC reduces to:

𝐶 (𝑟, 𝑟 + Δ𝑟) = 𝐴

𝜋Δ𝑟 (2𝑟 + Δ𝑟) 𝑛𝑅 𝑛𝐺

𝜌=𝑟+Δ𝑟∑︁
𝜌=𝑟

𝑛𝑅∑︁
𝑖=1

𝑛𝐺∑︁
𝑗=1

𝛿( |ri − rj | − 𝜌). (5)

Here, we have used the properties of delta functions. The summation term in the above expression is computed by finding
the histogram of pairwise distances of single-molecule localization points from two channels (1, 3–5). The average pairwise
distance distribution for a randomly distributed dataset is given by 𝜋Δ𝑟 (2𝑟 + Δ𝑟)𝑛𝑅𝑛𝐺/𝐴(1, 3). Thus, the pair cross-correlation
function approaches 1 for such datasets.
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Fig. S1: (a) STED microscopy image of two different antibodies against KAHRP (same as in Fig. 5 a). 1 pixel equals to 15 𝑛𝑚.
(b) STORM image data containing red and green localization points generated using the STED image as a probability map. The
number of red and green points for the two channels is indicated in the title. (c) Comparison of the image-based PCC of the
STED image (dashed line) with the PCC computed from the generated STORM data for different numbers of localization
points (line and points).

Generation of simulated STORM data
To generate simulated STORM data from experimental images, we assign localization points to each pixel (randomly within the
pixel) in proportion to its intensity. The proportionality factor determines the total number of points assigned. To distribute the
calculated number of points within a given pixel, we use intensity interpolation to stochastically assign points within the pixel.
Fig. S1 shows the comparison of the image-based PCC (dashed line) with the PCC computed from the generated STORM data
for different numbers of localization points (line and points).We find that the PCC values from both methods match when there
is a large number of localization points. The correspondence is lower in cases with fewer localization points for the two channels.
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Fig. S2: Representative STED microscopy images of KAHRP (red) and ankyrin (green) at different times over the course of
malaria infection. 20 images were used to generate bar graphs in Fig. 5 c-d.
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